講座編號(hào):jz-yjsb-2022-y039
講座題目:Convex solution for a class of Hessian equations on spheres
主 講 人:向妮 教授 湖北大學(xué)
講座時(shí)間:2022年10月13日(星期四)下午14:00
講座地點(diǎn):騰訊會(huì)議,會(huì)議ID:358 137 314
參加對(duì)象:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院全體教師及研究生
主辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院、研究生院
主講人簡(jiǎn)介:
向妮,湖北大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)學(xué)院教授,博士生導(dǎo)師。主要研究完全非線性偏微分方程等,在Calc. Var. Partial Differential Equations,J. Differential Equations, Proc. of the Royal Society of Edinburgh等發(fā)表學(xué)術(shù)論文多篇,主持湖北省教育廳優(yōu)秀中青年人才項(xiàng)目?jī)身?xiàng),國(guó)家自然科學(xué)基金天元基金、青年基金、面上項(xiàng)目各一項(xiàng)。
主講內(nèi)容:
In this talk, we introduce the second order derivative estimates for Hessian equations $\sigma_k(u_{ij}+u\delta_{ij})=f(x, u, \nabla u)$ on $\mathbb{S}^n$, which can be regarded as an generalization of Christoffel-Minkowski type problems. Furthermore, we derive the existence and uniqueness results for convex solution of general Christoffel-Minkowski problem $\sigma_k(u_{ij}+u\delta_{ij})=\varphi(x)g(u)$ based on the a priori estimates and constant rank theorem.
